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Summary:  
The study compared selected heavy haul systems in Russia, representing extreme cold, and South 
Africa, representing extreme heat. It unpacked essential differences to answer the research question, 
whether contrasting perspectives on challenges shared in extreme cold and -heat could enhance 
scientific understanding to respond to them. Descriptions of key characteristics and parameters of both 
railroad systems are developed. A case study methodology explored their differences, and unsurprisingly 
also found several similarities. The latter concerned locomotive availability and -reliability, allowable axle 
load, electric traction, and systemic growth. Differences were found in respect of terrain, optimizing 
operations, transcontinental versus sub-continental trips, system throughput, train length, and brake 
systems. In conclusion, and to answer the research question, different perspectives on shared problems 
in extreme cold and -heat can indeed enhance understanding of them. In particular, both cases shared a 
need for highly reliable locomotives, to ensure high mission reliability in their respective extreme 
conditions. The authors also agreed that there was substantial mutual learning in the simple interchange 
of experiences and ideas during the study. 
 
Index Terms: Extreme cold heat; availability, reliability, capacity, electric locomotive, car, traction 
 
 
1 INTRODUCTION 
 
Accumulated scientific understanding rests on description, measurement, and analysis of differences 
among a set of variables in dissimilar settings. The authors’ respective railway backgrounds reflect 
operations in sites located in the coldest and hottest places on Earth. The conference theme Railroading 
in Extreme Conditions thus prompted a naturally comparative paper. As research question, can 
contrasting perspectives on challenges shared in extreme cold and -heat enhance scientific 
understanding to respond to them? The authors examined and compared the history, current state, and 
prospects of heavy haul railroads in eastern Russia and in South Africa. Despite the geographical- and 
technological distance, they identified several comparable aspects in their respective heavy haul 
operations. Both countries have several railroads that could be compared: To narrow the research to a 
manageable scope, the authors selected the following two cases, to accentuate differences between two 
disparate operations. 
 
2 SYSTEM DESCRIPTIONS 
 
2.1 Russia 
 
Russian Railways, Rossiyskie zheleznye dorogi (RZD) has a huge railroad network that starts about 6000 
trains every day. Topology of the western part is classic, with multiple routes between any two points, that 
convey mixed passenger- and freight traffic. By contrast, topology of the eastern part is simple, but with 
very long hauls. Its current freight mix is export oriented – oil, coal, metal, and grain. In 2010, it 
experienced container traffic growth in the east-west direction. Both eastern and western parts of 
Russia’s railroads feature heavy haul operations. 
 
This paper will focus on the eastern part, which comprises two major routes, the Trans-Siberian Railway 
and the Baikal-Amur Magistral (BAM). Coal, oil and ores, mined in Siberia, move to domestic- and 
overseas consumers in 6300-tonne trains in the easterly direction, and 9000-tonne trains in the westerly 
direction. The growing Asia-Pacific market needs ever more of these commodities, so much so that both 
major routes work at 90-100% load factor and now face a capacity challenge. Eastern railroad capacity is 
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a major constraint on developing regional industry and increasing export volumes. Not surprisingly, 
growing coal exports from other countries fill the shortage left by Russia in the Pacific region. 
 
The Trans-Siberian Railway was built from Moscow to Vladivostok between 1891 and 1916. It is now 
double tracked and electrified throughout its 9288km length. The highest point is Yablonevy Pass, 1019 
meters above sea level. The entire Trans-Siberian is electrified: 3kV DC in the west and the Ural region, 
and 25kV AC in the east. Main locomotive classes in the east are VL-80 and, since 2007, 2ES5K – see 
Table 1 for key locomotive parameters. Maximum capacity is about 100 million tonnes per annum (Mtpa). 
The Minister of Transport recently stated that capacity of the Trans-Siberian was already exhausted, that 
traffic on the BAM was limited; and that the Trans-Siberian Railway should be destined for container and 
passenger transportation, and the BAM should be enlarged and used for freight traffic [1]. 
 
The BAM connects eastern Siberia and the Russian Pacific ports. It was constructed intermittently 
between 1938 and 1984, with long pauses; the last tunnel was completed only in 2003. The highest point 
is Mururinsky Pass, 1323 meters above sea level. The western part, from Taishet, where it connects to 
the original Trans-Siberian Railway, to Tacksimo, is electrified at 25kV AC: Main locomotive classes are 
VL-80, VL-85 and the new 2ES5K. The route is not electrified east of Tacksimo. It uses diesels 2TE10 in 
various modifications. Typical train mass there is 5600 tonnes. The BAM is double tracked from Taishet to 
Ust’-Kut, the remainder is single tracked. 
 
The route traverses harsh terrain. Some 50% is located higher than latitude 56°N, and operates in 
extreme Arctic conditions. Most parts of the BAM have strong continental climate with extreme 
temperatures; 35°C and higher in summer and -55°C and lower in winter. The maximum annual 
temperature range at a single site can approach 100°C. Around 200 days per year average below 
0°C.Tynda, capital of the Baikal-Amur route, is considered comfortable, with ≈50°C average annual 
temperature range and daily temperature changes of ≈20°C. Taishet and Sovetskaya Gavan have 
average annual temperatures of 0°C, while New Chara has only -11°C. Permafrost depth in the Tacksimo 
area is 10-15m. Summer rains can precipitate more than 100mm at a time. Additionally, the north part of 
the Transbaikal region has seismic activity – earthquakes up to XII on the MSK scale, i.e. all surface and 
underground structures completely destroyed, are possible. 
 
Standard axle load was formerly 24-25 tonnes: Since the early 2000s new- or reconstructed track 
supports 30 tonnes, although no such cars are yet in service. Mainlines use continuously welded R65 rail 
of 65 kg/m, laid at 1520mm track gauge. Temperature for de-stressing is 25-35°C, and cold season 
stabilization is by means of expansion joints only. The westerly direction has only light gradients, except 
two passes over the Ural Mountains (Chelyabinsk-Ufa and Perm'-Ekaterinburg), while the easterly 
direction has some sections with 2.8% upgrade. Moscow to Irkutsk has no tunnels, whereas Irkutsk to 
Vladivostok has 21 tunnels, plus one to Nakhodka. 
 
Trains typically convey 71 loaded cars or 100 empty cars. However, many short stations cannot 
accommodate 100-car trains. A graduated release air brake system is used. Couplers are SA-3, also 
used by Nordic heavy haul: The nominal maximum force is 2500kN, but operational limits of 950kN for 
starting and 1300kN when moving above 10km/h apply. Distributed power (DP) is not currently in use. A 
domestic radio distributed power (RDP) system, ISAVP-RT, exists for old-type DC electric locomotives 
hauling 18000-tonne, 780-axle trains. However, in 2007, a brake application command did not reach the 
remote locomotive, resulting in derailment of 19 cars and a locomotive. Hence RZD has questioned 
ISAVP-RT, and currently supports development of a new system SUL-R-RT for AC and DC 
microprocessor controlled locomotives. Interestingly, RZD can link two 9000- or 6300-tonne trains and 
move the coupled train with crew coordinated by voice radio. This technique is widely used in summer, 
when one track is closed for maintenance. 
 
Typical 25kV AC substations are placed 50km apart and feed 25km to left and right. They have 25- or 
40MVA transformers that support 60MVA peak. For heavy upgrades, 40MVA substations with two 
transformers in parallel are provided: In this case the overhead conductor can feed 880A nominal, while 
during test trips more than 1200A has been observed. 
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Table 1: Key Parameters of Russian and South African Locomotives 
 

  

 

Loco-
motive 
Class

Year in 
Service

Wheel 
Arrangement

Mass, 
tonnes

Power 
at Rail, 

kW

Traction 
Motor 
Type

Continuous 
Tractive 

Effort, kN

Wheelslip 
Control

Electric 
Braking

Track 
gauge, 

mm

Power 
Supply

VL-80t 1970 Bo'Bo'+Bo'Bo' 184 6160 DC 400 Per bogie Rheostatic 1520 25kV AC
VL-80s 1979 Bo'Bo'+Bo'Bo' 192 5920 DC 400 Per bogie Rheostatic 1520 25kV AC
VL-80r 1974 Bo'Bo'+Bo'Bo' 192 6160 DC 400 Per bogie Regenerative 1520 25kV AC
VL-85 1986 Bo'Bo'Bo' 

+Bo'Bo'Bo'
288 9360 DC 657 Per bogie Regenerative 1520 25kV AC

2ES5K 2007 Bo'Bo'+Bo'Bo' 192 6120 DC 423 Per bogie Regenerative 1520 25kV AC
2TE10m 1981 Co'Co'+Co'Co' 276 3660 DC 245 Per bogie None 1520 Diesel
9E 1978 Co'Co' 168 3900 DC 390 Per bogie Rheostatic 1067 50kV AC
15E 2010 Co'Co' 180 4500 AC 450 Per axle Regenerative 

+ rheostatic
1067 50kV AC

34 1976 Co'Co' 111 1760 DC 181 Per bogie Rheostatic 1067 Diesel
 
2.2 South Africa 
 
South Africa has a railroad network of ≈23000 route km, most built to narrow track gauge, 1067mm, in 
colonial times. It forms part of the contiguous Southern African Development Community network that 
stretches from Cape Town to within 400km of the Equator. However, narrow gauge railroads are not 
inherently competitive, so much of the latter network has gradually lost traffic to other transport modes, 
and Africa has not developed a continental railroad network. Nevertheless, narrow gauge can support 
entry-level heavy haul. South Africa’s national railroad, Transnet Freight Rail (TFR), has two heavy haul 
operations, the Sishen-Saldanha iron ore export line, and the Ermelo-Richards Bay coal export line.  
 
The authors selected the Sishen-Saldanha line as example of heavy haul in extreme heat. Traversing 
generally arid, hot, terrain between latitudes 28ºS and 33ºS, it presents an ideal counterpoint for 
extremely cold, wet Russian conditions. Built between 1972 and 1976 to export 18Mtpa of iron ore, this 
861km single-track railroad was archetypical heavy haul in many respects. Mines are located near 
Sishen, 1295m above sea level, and the port is in Saldanha Bay on the Atlantic coast. Except for the last 
150km close by the coast, inland temperatures range from a minimum of -5°C in winter to a maximum of 
45°C in summer, giving a range of only 50°C. Precipitation is ≤160mm per year, and ≤5mm in dry months. 
Snow is unknown. Topography is generally fairly easy, but crossing three river valleys (Kenhardt, Orange, 
and Berg), plus one escarpment, challenge train handling at those sites. Ruling gradients are 
asymmetrical, 0.4% against loaded trains, and 1% against empty trains. Initial axle load was 26 tonnes for 
cars and 28 tonnes for locomotives. Rails are 60kg UIC laid on concrete ties at 650mm spacing. 
 
Initial trains conveyed 202 cars hauled by six Class 34 diesel locomotives. Please see Table 1 for key 
locomotive parameters. The cars are fitted with AAR direct release air brakes, and equipped with AAR F-
type rotary couplers to allow dumping them without uncoupling unit trains. 
 
The line was electrified at 50kV 50Hz AC in 1977 as a hedge against oil sanctions. At that time, 50kV AC 
was heralded as the future of electric traction, but contrary to expectations, only three railroads ever 
electrified at that voltage. Now, after de-electrification in 2000 of BC Rail’s Tumbler Ridge Subdivision in 
Canada, Black Mesa & Lake Powell in the United States, and Sishen-Saldanha, are the remaining two 
railroads using 50kV AC. Six substations, each with two transformers of 40MVA each, i.e. 480MVA total, 
supply electricity to trains. The substations are on average 170km apart, one of the advantages of 50kV 
in sparsely developed territory. The locomotive technology of the time did not support regenerative 
braking, so the Class 9E electric locomotives that came with electrification were equipped with dynamic or 
rheostatic brakes only. Regeneration has however now been implemented for Class 15E locomotives. 
 
Sishen-Saldanha has followed a growth trajectory since the early 2000s, in response to increasing iron 
ore export demand. In 2001, car and locomotive axle loads were increased to 30 tonnes. Next, starting in 
2002, the original Class 9E electric locomotives were overhauled and a new control system fitted, to 
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increase mission reliability. Currently, new Class 15E electric locomotives are being built in South Africa. 
Thirty of them are already in service, with the remainder of a first order for 44 still under construction. A 
follow-on order for a further 32 locomotives has been placed, for a total fleet of 76 locomotives. The 
original nine even-numbered crossing loops plus one odd-numbered loop, have been supplemented by 
building nine intermediate uneven-numbered loops for a total of nineteen loops between Sishen and 
Saldanha. The car fleet has been expanded to match. Trains now convey 342 cars with locomotives in 
four consists under radio distributed power control. They are 3.6km long, with a gross trailing mass of 
41040 tonnes and a payload of 34200 tonnes. Five Class 15E locomotives are required to haul a 342-car 
train, which constrains the number of such trains per substation. TFR therefore deploys trains with both 
diesel- and electric consists, typically three electric locomotives plus seven diesels. This is a suboptimum 
solution, which sacrifices load on the diesel locomotives so that they balance at the same speed as the 
electric locomotives, to avoid forcing traction motors on the latter into short time rating. 
 
Frequency is up to 35 trains/week [2]. This relatively small number of trains supports a service design that 
is robust against perturbations. When complete in 2014, the expansion scheme will support throughput of 
61Mtpa [3], with an ultimate vision of 90Mtpa [4].  
 
3 METHODOLOGY 
 
Railroad development in each country was significantly affected by cultural, economic, geographical, 
political, and many other differences, including the conference theme, extreme conditions. The authors 
set out to learn what they could from the resultant variations in fundamental railroad technologies and -
practices. In the absence of an established paradigm, this paper necessarily follows a case study 
research design to explore topics for mutual learning. The following mix of aspects is therefore 
unapologetically eclectic.  
 
4 RESULTS: SIMILARITIES 
 
4.1 Locomotive availability and reliability 
 
Both counties feature a high proportion of relatively old locomotives. The former USSR built electric- and 
diesel locomotives essentially for its domestic market. The main types, VL-80 and TE10, date from the 
late 1970s until 1994. However, for political and economic reasons, locomotive R&D practically ceased in 
the 1990s, some locomotive builders now find themselves in foreign states, e.g. Ukraine and Georgia, 
and overhauls were halted for a decade. For similar reasons, South Africa’s locomotive industries were 
decimated. New locomotive acquisition was interrupted from 1993 to 2009, and average locomotive age 
escalated to 30 years. These issues have contributed to current questionable reliability, while heavy haul 
service needs high reliability. 
 
RZD approached this challenge sensibly, by progressively optimizing trips to decrease operating 
expenditure. Short trips of ≈250km for crew and ≈800km for locomotives, a legacy from steam- and diesel 
traction, have been optimized to respectively 400-500km and ≈3000km. Optimized crew trips are 
comparable to South Africa’s ore line, which has rest facilities at the halfway crossing loop. Table 2 
presents pertinent availability and reliability data for the locomotives under consideration (faults per 
million km for two-section locomotives refer to the entire locomotive). Noting that locomotives with 95% 
availability and ≈20 mission critical faults per million km, on long trips of about 3000km (i.e. 72 hours 
between operational services), will cause an average locomotive failure delay of ≈3.75 hours on every 7th 
train, it is evident that target reliability must be significantly higher than at present. Russia’s superior 
availability and reliability achievements, based on modern condition monitoring systems, operation 
analysis, and failure prediction, suggest that South Africa can learn from it 
 
New Russian locomotives may initially be less reliable than old locomotives, because they have new 
equipment and functions, and testing of experimental series may be incomplete. Their failure rate 
therefore exhibits a bathtub curve. Old but simply constructed locomotives often have superior inherent 
reliability. But dramatically changing working conditions for old locomotives, for example running them on 
super-long trips, or extending their maintenance period, or hauling heavy loads, can destroy them.  

Proceedings of the International Heavy Haul Association Specialist Technical Session: Railroading in Extreme 
Conditions [CD-ROM]. Calgary, Canada: International Heavy Haul Association 



Maxim Keyno and Dr. Dave van der Meulen:  
Differences and similarities: Learning from Heavy Haul in cold and heat 
 

Table 2: Locomotive Availability and Reliability 
 

 
 

Actual Target Actual Target
Russia, VL-80 and 2TE10 95.0 95.0 14.0 14.0
Russia, 2ES5K 99.0 97.0 26-48 11.1
South Africa, ore line, all [5] 88.4 88.5 31.2 35.0

     ReliabilityAvailability
% Faults per million km

Locomotive Class

4.2 Axle load 
 
Notional maximum axle load, at 30 tonnes, is the same for both railroads, but with qualifications. South 
Africa uses 30 tonnes only on Sishen-Saldanha: The rest of the country uses 26 tonnes for dedicated 
heavy haul routes, and ≤21 tonnes for other lines. Russia applies 30-tonne standards only to new or 
heavy-repaired lines – at present not yet the entire length of the Trans-Siberian or the BAM. Operation at 
30 tonnes/axle is only likely in the next decade, but for selected lines, e.g. the BAM, it is possible earlier. 
At this time, RZD infrastructure is now fully ready for 25-27 tonnes/axle [6]. In 2010, the Tikhvin Plant 
started producing 25 tonne-per-axle cars. Bogies for 27 tonnes are now in certification, and production 
will commence in 2012.  
 
In extremely low temperatures, construction metal properties and track substructure behavior change 
dramatically. Rails and metal details in deep cold are brittle and suffer accelerated fatigue and therefore 
need more frequent inspection. Frozen track substructure has lower elasticity that induces higher forces 
in interaction with rolling stock. Rolling stock maintenance is also more critical, to avoid impact forces 
from flat- or skidded car wheels, and rail burns caused by malfunctioning locomotive wheelslip prevention 
equipment. 
 
While climatic conditions play a role, 30 tonnes seems to be the ceiling for narrow gauge track, but only 
the threshold for standard- and broad gauge track. Something for South Africa to learn. 
 
4.3 Electric traction 
 
Both routes use electric traction, which is gaining ground in global heavy haul—a desk study revealed the 
present tonne-kilometer ratio to be roughly ⅔ diesel to ⅓ electric. South Africa’s experience in applying 
electric traction to heavy haul is important to Russian railroads. Sishen-Saldanha has shown that 40000-
tonne trains are workable, provided that power supply is adequate. Ermelo-Richards Bay has shown that 
200-car trains with head end power and electronically controlled pneumatic (ECP) brakes can tame 
rugged terrain (note an intention to ultimately implement wire distributed power on the ECP cable on 
Ermelo-Richards Bay). Both operations hold valuable lessons in absorbing regenerated energy, weak 
external power supply, and low line voltage. 
 
4.4 Systemic growth 
 
Heavy haul in both countries is growing. However, the railway capacity shortage in eastern Russia has 
already resulted in lost export income and hampered development of mining and domestic beneficiation. 
Similarly, Sishen-Saldanha throughput has lost ground to competing countries because it could not ramp 
up capacity sufficiently quickly. Markets abhor a vacuum: If one exporter cannot fulfill the growing needs 
of China, India, Japan, and South Korea, another exporter will bag the opportunity. It is therefore 
important for both railroads that full development precedes implementation. New development on a time 
critical operation spells trouble. 
 
5 RESULTS: DIFFERENCES 
 
5.1 Terrain 
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The Sishen-Saldanha route falls gently from mines to port. Ruling gradients are asymmetrical, because 
loaded trains travel in one direction only, and it is therefore possible to fully utilize the same motive power 
in both directions. However, even though the route can potentially be self-sufficient by regenerating its 
total traction energy requirements, use of car friction brakes on steep downgrades dissipates so much 
energy that this ideal is out of reach on the existing alignment. Maximum altitudes on the Trans-Siberian 
and BAM are lower than Sishen, and the distances are immense, so the average gradient is 
approximately zero. Conditions are therefore good for regenerative braking, which is widely used by VL-
80r, VL-85, and 2ES5K locomotives. Depending on local conditions, regeneration has been shown to 
recover 15-20% of energy consumed. 
 
5.2 Optimizing operations 
 
The main objective is to maximize the working time of locomotives. When a train travels without stopping 
in one direction through all stations, it banks time for major locomotive maintenance, and increases 
productivity. This is of interest to South Africa. Similarly, it is necessary to increase crew productivity: Five 
years ago Russian crews lost substantial work time at the beginning and end of their shift. Now, after 
optimization, special preparation crews accept the locomotives after maintenance or repair in a depot, 
and move them from depot to yard and back. It saves time for the mainline crew’s work. Similarly, 
implementation of distributed power in Russian railroads would dramatically increase crew productivity.  
 
5.3 Transcontinental versus sub-continental trips 
 
Rolling stock for long hauls must have high reliability. If not, frequent use of diagnostic equipment to 
detect failure in critical components – wheels, bearings, bogies, brakes, and car bodies, is required. 
However, for locomotives such control is insufficient, and it is therefore necessary to monitor a wide 
spectrum of internal equipment that is not accessible by track-mounted sensors. Therefore an onboard 
diagnostic system is needed. This was one of the drivers of Sishen-Saldanha’s Class 9E upgrade. 
Locomotive repair depots are placed far apart, and defective or failed locomotives may travel 700-800km 
to nearest depot. It will be more effective if the onboard diagnostic system sent failure reports to the depot 
to prepare the facility. Compared to Sishen-Saldanha, the Trans-Siberian is ten such operations strung 
end-to-end: What for Trans-Siberian is a locomotive trip, is several round trips for Sishen-Saldanha – 
there is much to learn regarding mission reliability. 
 
5.4 System throughput 
 
If Russia were to operate Sishen-Saldanha-sized trains on its double Trans-Siberian plus at least one 
BAM track, it would have potentially huge throughput capacity. However, concrete and steel alone do not 
make railway capacity. Sishen-Saldanha runs under a corridor strategy that improves customer service 
through better operational interface management, improved monitoring of corridor performance, 
managing operational risk, identifying improvement opportunities, and managing strategic projects across 
all stakeholders – mine, railroad and port. Although a vastly more complex operation, a similar corridor 
strategy could help railways in eastern Russia increase and balance productivity in the overall mines, 
railroad and port logistics system. Furthermore, Russian unloading facilities cannot use rotary dumpers 
without uncoupling cars: Therefore rotary coupler technology is very important for decreasing unloading 
time.  
 
5.5 Train length 
 
It appears that eastern Russian railways could convey substantially more traffic than at present by 
deploying longer trains. Distributed power, by radio as on Sishen Saldanha, or wireline as envisaged for 
Ermelo-Richards Bay, is worth considering. When increasing train length by radio distributed power, the 
train air brake system remains unchanged, and inherits whatever issues it had before RDP. When 
increasing train length by wire distributed power (on the same train communication network as ECP 
braking), the train pipe becomes a feed pipe, and electronic control enables features not possible with 
radio distributed power. Importantly, on cars they include control of empty/load settings, and remote 
application and release of handbrakes. This eliminates two major defect categories, hot wheels and 
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skidded wheels: In turn this increases mission reliability, and essentially eliminates associated track 
damage by cars, in extremes of both cold and heat. 
 
The latter variant is appropriate for unit trains with rotary couplers so that cars need not be uncoupled for 
unloading. At this time Russia does not operate unit trains, and connectors for ECP braking or wired DP 
is a major concern because they are perceived to have low reliability in extremely cold conditions. 
Perhaps unit trains will emerge when the freight operators’ market has matured. It should then be 
workable to start using ECP braking for selected freight trains (coal, oil or container) that operate on 
stable routes. It is also important to recognize that many infrastructure issues must be resolved for 
successful distributed power implementation. 
 
5.6 Brake system 
 
Against South Africa’s direct release background, it is interesting to note that RZD uses graduated 
release braking – its trains of maximum 71 cars loaded, and 100 cars empty, must be the longest 
graduated release trains in the world. Long empty trains are possible because braking plays a smaller 
role for them. However, pneumatic graduated release braking may induce high coupler forces near the 
front of long empty trains, and perhaps derail them. It is also interesting to note the practice of combining 
trains in summer to support closing one line for track maintenance. ECP braking, which supports 
simultaneous graduated release on all cars on very long trains, would make a natural contribution to the 
efficiency and safety of very long trains. 
 
6 DISCUSSION 
 
Although shared extreme-condition locomotive challenges initially attracted the authors, they found even 
more valuable synergy by examining car-, energy supply-, locomotive-, and track subsystems. With 
appropriate architecture, such subsystems have the potential to be integrated and to show online, the 
collective health of a complex railroad system, to provide information for data mining, and even to provide 
more information about locomotives than their own onboard systems. Such topics will therefore assist in 
determining the scope of future research interaction, which will no doubt follow on this exploratory study. 
Railroads require substantial investments in assets that take long to implement and that have a long 
design life. The opportunities for mutual learning should therefore evolve over time into sustainable 
relationships. 
 
Comparison of their current states shows that both railroads are at a stage when demand exceeds 
capacity. While some may see this circumstance as serendipitous, it should come with a warning that 
source competition for bulk commodities from other exporting countries can not only step into the gap, but 
reduce the perceived severity of the problem. In contrast to South Africa, Russian Railways do not now 
have dedicated lines for heavy haul operations. However, this type of specialization is on the horizon in 
Russian Railways’ strategy for developing rail transport [7]. There will be opportunities to use make use of 
advanced heavy haul insights and technologies from heavy haul operations in South Africa. To 
reciprocate, Russian Railways’ insights into sweating its assets could leverage substantial capacity from 
South Africa’s heavy haul systems. 
 
It was heartening to reflect on how extreme climatic conditions breed innovative railroad people. Both 
Russia and South Africa have explored and pushed heavy haul boundaries far beyond normal practice. In 
1986, the heaviest Soviet train, with gross mass 43407 tonnes and length 6.5 km, was conducted on 
300km of the Celinnaya Railroad. In 1989, South African Transport Services set a world record with a 
train of gross mass 71765 tonnes and length 7.3km, on the full 861km length of the Sishen-Saldanha 
railroad. Such achievements give confidence to keep challenging everyday limits and to act boldly when 
strategically significant opportunities arise. 
 
7 CONCLUSIONS 
 
In conclusion, and to answer the research question, different perspectives on shared problems in extreme 
cold and -heat can indeed enhance understanding of them. Nevertheless, the authors also concluded that 
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railroads in extreme conditions must in the first instance simply be built to resist those extreme conditions. 
Both railroads traverse long distances through vast, sparsely populated, inhospitable, open spaces, so 
infrastructure in particular must respond directly by means of custom solutions that reflect the external 
impacts of local conditions. However, the differences between extreme cold and extreme hot conditions 
are so diverse that the amount of sharable insight and knowledge is arguably limited.  
 
By contrast, while rolling stock must also be designed for relevant extreme conditions, it became evident 
that both cases share a need for highly reliable rolling stock, locomotives in particular, to ensure high 
mission reliability in the abovementioned extreme conditions. The authors had envisaged examining 
synchronized data acquisition from onboard-, energy supply-, and track monitoring systems which, when 
processed, would support optimal train movement and maintenance planning. Furthermore, service 
reliability offers scope to enhance performance of hardware subsystems that already asymptotically 
approach their present known limits. This is particularly valuable for narrow gauge rolling stock, because 
failure rates tend to be similar for any track gauge. E.g. if narrow gauge locomotives haul less because 
their axle load is lighter, then they will generate more perturbation per unit throughput. However, the 
sheer volume of other topics waylaid them, so reliability becomes a recommendation for further research. 
 
What was also interesting is that many problems are shared among all railroads, without regard to 
extreme conditions. Having completed the course, the authors agreed that there is substantial mutual 
learning in the simple interchange of experiences and ideas, which is unlocked by exploring differences. 
As example of mutual learning, Russia can consider much longer trains, managed as unit trains, using 
electronically controlled pneumatic braking and distributed power: South Africa can consider heavier axle 
loads and heavier rail – if Russia can entertain 30 tonne axle load in Arctic conditions. It should be 
possible to increase axle load even further in hot conditions. Of course, this conclusion is perfectly 
aligned with the IHHA mission. 
 
Now that South Africa has joined the Brazil Russia India China (BRIC) group, both countries will no doubt 
find more comprehensive and structured opportunities for experience and technology exchange, and for 
mutual learning.  
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